美伢新世纪小学数学论坛 第 11989 号会员,加入于 2022-01-24 20:59:33 +08:0010 2 85 |
【2022 春】内蒙古包头市东河区同道小学(百所示范校)李佳 6 下 《正比例》展示大赛-2022 • 美伢 • 3年前 • 最后回复来自 百合 | 295 |
3年前 回复了 美伢 创建的主题› 展示大赛-2022 › 【2022 春】内蒙古包头市东河区同道小学(百所示范校)李佳 6 下 《正比例》 |
我是这样思考的,对概念性的教学,学生是要经历从特殊到一般再到特殊的,学生通过正比例的正反事例建构了对正比例的认知,再对比 2 个正比例的情境得到正比例的本质意义,用一般的语言、字母符号表征正比例意义,再用具体情境说明一般化的表征。这样的学习动线可以更好地帮助学生巩固正比例意义并用这个规律辨别正比例。实际上,并没有完全脱离数据。由特殊 — 概括一般 — 在用特殊解释一般。
3年前 回复了 美伢 创建的主题› 展示大赛-2022 › 【2022 春】内蒙古包头市东河区同道小学(百所示范校)李佳 6 下 《正比例》 |
3年前 回复了 美伢 创建的主题› 展示大赛-2022 › 【2022 春】内蒙古包头市东河区同道小学(百所示范校)李佳 6 下 《正比例》 |
教案终稿:《正比例》
执教教师:李佳 内蒙古包头市东河区同道小学
答辩成员:
睢彦 内蒙古包头市东河区同道小学
白玲玉 内蒙古包头市东河区同道小学
张东慧 内蒙古包头市东河区同道小学
指导教师:
马凯 内蒙古包头市东河区教育教学研究中心
李燕 内蒙古包头市东河区教育教学研究中心
【答辩团队风采展示】
团队 4 人照片 :
【教学内容】 新世纪小学数学(北师大版)六年级下册 41 页
【教材分析】
《正比例》第一课时,教材首先呈现了正方形面积与边长、周长与边长的表格,通过实例让学生看到每一组中的两种量的变化情况,引导学生初步发现 “正方形的面积和周长都是随着边长的增加而增加”;再通过对比这两组量的变化的区别,从变化中看到 “不变”,初步体会周长与边长、面积与边长之间的变化规律不同。然后再结合 “路程与时间” 两个变量关系的研究,丰富学生认识正比例的例证,初步理解正比例的意义。在第一课时两个正例一个反例的基础上,“试一试” 中又提供了一正一反两个情境,帮助学生辨析理解正比例的意义。这样,教材从不同的角度提供了有利于学生探索并理解正比例意义的情境,既包括 “时间与路程”“乐乐和爸爸年龄变化情况” 等生活情境,也包括 “正方形周长与边长、面积与边长” 等数学情境,情境中有正例也有反例,为学生理解 “正比例” 意义提供了丰富的直观背景和具体案例,以引导学生经历从具体情境中抽象概括出正比例的过程,从而理解正比例的意义。
【学生分析】
通过正比例前测分析,了解学生学情、把脉学生生长点:
数据分析汇总表:(抽样调查 30 人)
发现一:表格 1 中的变化的量有( )和( ),它们是怎样变化的?
表格 2 中的变化的量有( )和( ),它们是怎样变化的?
发现一考察学生对变化的量的认识,以及用自己的语言分别描述两表中的变量关系的能力,发现学生符号意识水平层次,如上表所测结果。
发现二: 表格 1 和表格 2 的两组变量在变化中的相同之处与不同之处是什么?
发现二考察学生学习路径,运用生活化语言关注表象不同、还是能运用数学语言、符号语言关注本质规律,结果如上表所测。
发现三: 你能用自己喜欢的方式表达表格 1 的变化规律吗?
在表征变化关系时,考察学生符号意识所处的思维水平层次,测试结果如上表。
为达到精准教学,对学生进行前测分析。学生在学习正比例前普遍在第一与第二水平,在变化的量中,我们将大部分同学从第一水平提升至第二水平,能用数学化的符号语言表达量的变化。学习变化的量后我们进行正比例的前测,经过测试,决定把教学重点放在将学生从第二水平提升至第三水平,深化符号语言与符号的应用。第四水平在北师大的教材设计中并不是最重点的地方,我们在保障学生达到第三水平的前提下,尽力与初中衔接,带领学有余力的同学上升至第四水平。
【学习目标】
1.结合 “正方形的周长与边长,正方形的面积与边长,路程、时间与速度” 等情境,用自己的语言描述它们之间的变化关系,能从变化中看到 “不变”,认识正比例。
2.能用数学符号表示表格或文字中的成正比例变化规律,并根据正比例意义判断两个变量量是否成正比例。
【教学过程】
一.情境导入,探究两个变量间的关系
师:同学们, 上节课我们认识了生活中有许多变化的量,今天我们继续跟随淘气、笑笑走进变量的世界。
呈现视频动画,引出问题: 正方形周长与边长,面积与边长是否存在着某种关系。
探究要求:
1. 独立填写表格。
师追问:边长只能填到 4cm 吗,周长和面积呢?只能是正整数吗?
【设计意图:表格中数据的补充,学生更多的是借助过去所学数量关系,关注点多在计算,没能站在动态的、对应的角度去看看待变化关系。由学生习惯的常量视角到变量视角的变化,需要老师引导学生调整观察视角】
2. 小组合作探究:观察表格你有什么发现。
预设:生 1:正方形的周长总是边长的 4 倍。
生 2:正方形边长加 1cm,周长就增加 4cm。
生 3:正方形边长扩大几倍,周长就扩大几倍。
师追问:对比观察两组变量,说说它们的变化情况有什么相同之处。
预设:生 1:正方形的面积和周长都随着正方形的边长增加而增加。
生 2:正方形的面积和周长都随着正方形的边长变化而变化,而且它们的变化方向是一致的。
【设计意图:借助学生熟悉的正方形周长与边长,面积与边长这两种学生熟悉的相关联的量,先放手让学生合作探究、观察发现, 再通过引导学生有序观察,梳理自己的发现, 让学生感知判断正比例关系的第一个要素, 两种量相关联,一个量随着另一个量的变化而变化 (变化方向一致)。】
二.比较变量特征,认识正比例
(一)情境一:正方形周长与边长,面积与边长变量规律的不同。
师:同学们发现了上面两种变量关系的共同点是: 都是相关联的量,一个量随着另一个量变化而变化。(方向一致)
师追问:那么正方形周长与边长,面积与边长的变化规律相同吗?
预设:生 1:正方形的周长是边长的 4 倍,但面积与边长的倍数关系是不确定的。
生 2:4÷1=4 8÷2=4 12÷3=4 比值相等 1÷1=1 4÷2=2 9÷3=3 比值不一样
师:结合动图说说,它们的比值分别表示什么。
预设:正方形周长比边长就是边数,边数是不变的,面积比边长就是边长,边长在变化。
师:能用更简明的数量关系式表示它们的变化规律吗?
预设: 正方形的周长 ÷ 正方形的边长 = 4(一定)
正方形的面积 ÷ 边长 = 边长(变化的)
【设计意图:在学生发现两组量的变化情况的基础上,引导学生发现两组变量变化规律的不同,从变化中发现不变为理解正比例意义奠定基础,并引导学生用更简明的数量关系式表征关系。】
(二)情境二:一辆匀速行驶的汽车,行驶时间和路程
独立探究要求:
1. 独立完成表格,观察表格想想你从表中发现了什么。
2. 变化有什么规律,并用数量关系式表示。
预设:
生 3:90× 时间 = 路程
追问:90 这个比值表示什么意义呢? 生:表示速度,速度一定就是匀速行驶。
【设计意图:借助现实世界中学生最熟悉的路程、时间与速度之间的数量关系,速度不变,就是路程随着时间变化而变化的过程中,路程与时间的比值保持不变,由此引入路程与时间成正比例,为学生理解正比例丰富实力支撑。】
(三)结合正比例的材料,说一说什么样的两个量成正比例关系。
师:(出示正比例描述性定义)你能说说判断路程和时间是否成正比例的依据有哪些吗?
预设 : 生 1:路程随着时间变化而变化,它们的变化方向是一致的。
生 2:路程与时间的比,也就是速度是一定的。
师:你能判断第一个问题中正方形周长与边长,面积与边长成正比例吗?
预设:生 1:正方形周长与边长成正比例,它们是两个相关联的量,且比值一定。
生 2:正方形的面积与边长不成正比例,因为它们的比值是不一定的。
师:结合正方形周长与边长,匀速行驶汽车的路程与时间的关系,说一说什么样的两个量成正比例关系。
生:我明白了,两个相关联的量,一个量随着另一个量的变化而变化(变化方向一致),且它们的比值一定,它们就成正比例。
追问:是否有简洁统一的方法表示出所有成正比例的变量关系?
预设:生 1:可以用字母表示
生 2:比如 a÷b=c (c 一定) a 可以表示路程或者总价,b 可以表示时间或者数量…,c 表示它们的比值,c 是一定的。
生 3:也可以是 a=bc (c 一定)
追问:这两个字母式 a÷b=c (c 一定), a=bc (c 一定) 都可以表示正比例关系吗?你能说说吗?
生 4:这两个式子 a÷b=c (c 一定), a=bc (c 一定) 这两个式子都可以表示正比例关系,都能表示 a 随着 b 的变化而变化且比值 c 是一定的。
生 5:它们是乘除法的逆运算,可以互相转化。
师:同学们想到字母式来表示所有正比例关系,真是好办法,通常我们用 X 表示一个量,用 Y 表示另一个随着变化的量,k 表示它们的比值。你能再用字母式表示出正比例关系吗。y÷x=k (k 一定), y=kx (k 一定)
【设计意图:让学生自主阅读教科书中给出关于正比例的具体情境的描述性定义。并结合教材中提供的两个正例和一个反例,帮助学生认识正比例的意义,对比两组成正比例变量进一步发现正比例共性特征,然后 以任务驱动学生用字母式表征正比例,并结合情境解释字母式。感受符号表征的统一、简便。】
三.巩固练习,辨别生活中的正比例关系
1. 学校科学小组在同一时间、同一地点进行观察实 验,测得竹竿的高与竿影的长如下表。
(1)表格中相关联的量是( )和( ),( )随着( )的变化而变化。
(2)写出几组竿影的长与竹竿高的比,并计算比值,你发现了什么?
(3)竹竿的高与竹影的长是不是成正比例? 说明理由。
【设计意图:考察学生能否依据正比例的意义判断两个量是否成正比例,学生不仅要写出结论,还要说明理由。学生用自己语言描述的过程,就是对正比例意义应用过程。 学生对正比例的不同呈现方式,判断的难易程度是不同的,其中表格法呈现的判断正确率高于纯文字描述的呈现方式,可见学生还是需要借助直观性强的素材理解正比例的意义。第一题基础训练中,以表格数据为载体呈现变量关系,以引导式的问题,帮助学生有序思考、判断正比例关系。】
2. 观察视频中的情境,思考以下的问题
(1)视频情境中,有哪些变化的量。
(2)情境中两个变化的量成正比例吗?说明理由
【设计意图:以加油的动态生活素材,让学生运用运动和变化的观点分析变量关系,用字母式概括表示出,金额和油量所有点的集合及其对应关系。 脱离表格数据呈现变量关系,是学生厘清正比例的难点,以学生熟悉的加油情境的动态视频,让学生在变化中思考,把静态的、有限的表格数据换成动态的、对应的视频数据,引导学生通过分析情境变量关系,而不是只依靠具体数据计算判断正比例。】
3. 联想生活场景,判断两个相关联的量是否成正比例,说明理由。
生活场景一:
一个生产防护服的车间,要生产 10000 件防护服, 已生产的件数 与 未生产的件数 。
生活场景二: (成 否)
一个生产防护服的车间,每小时生产防护服 600 件, 防护服的总件数 与 生产的时间 。
生活场景三: (成 否)
一个生产防护服的车间,要生产 10000 件防护服, 每天生产的件数 与 生产的天数 。
生活场景四: (成 否)
张师傅比李师傅每小时多做 50 个口罩,生产时间相同的情况下, 张师傅生产口罩的数量 与 李师傅生产口罩的数量 。 (成 否)
【设计意图: 在同一情境下,设计四个场景 ,都是相关联的量但变化的趋势不同,都是有变化规律的但规律却不同。让学生在丰富的变量素材中,辨别正比例变量关系,进一步强化了正比例的认识。 正、反比例的学习是抽象的, 文字描述的呈现更进一步让学生把对数据的关注,提升到对变量关系的关注上 ,也是学习正、反比例以及后续函数学习的焦点,也是从常量思维到变量思维的转变,给孩子们提供丰富的变量关系, 在辨析不同变量关系的本质规律中,进一步加深对正比例意义的理解。】
四.板书设计
【教学设计点评】
浓墨淡彩 -- 正比例
----- 导师(李燕、马凯)评语
一、浓墨 ----- 一种变化的量(正比例)的深入理解
学生在 “变化的量” 一课中理解未必深刻,在对实际问题和数学问题进行分析过程中,需加强对函数概念的理解。
小学生常年在常量的学习中,有一定固化思维,本课带领学生体会对于自变量每一个确定的值,有唯一确定的值与之对应。正比例函数的特殊性在于两个变量的比值是定值,且为不等于零的实数,这是小学正比例关系的内涵的深化。而且后面学习在正比例函数的图象与性质的教学中,应注重引导学生体会由 “形” 助 “数” 和以 “数” 析 “形”,“数”“形” 结合展开探究活动。
本课教学设计依据北师版教材的问题串进行了从量众的生活实例中感悟一种变化的量(正比例),从 “ 淘气、笑笑走进变量的世界 ---- 正方形周长与边长,面积与边长的关系比较 ---- 一辆匀速行驶的汽车,行驶时间和路程的关系 ---- 竹竿的高与竿影的长 ---- 加油站金额和油量的关系 ---- 等等” 一系列的生活实例中体会这种关系。
皮亚杰认为,儿童认知形成的过程是先出现一些凭直觉产生的概念 (并非最简单的概念),这些原始概念构成思维的基础,在此基础上经过综合加工形成新概念,建构新结构,这种过程不断进行,这就是儿童认知结构形成的主要方法。这也是我们这节课在变化的量的认知上学习正比例的依据 --- 浓墨之处 。
二、淡彩 ----- 符号抽象这种变化的量(正比例)
本课还在从具体情境中抽象出数量关系和变化规律并符号表示进行了 “淡彩” 这也是将问题一般化的过程,超越了实际问题的具体情境,深刻揭示共性。
课中教师的点睛追问:
1. 追问:是否有简洁统一的方法表示出所有成正比例的变量关系?”
2. “这两个字母式 a÷b=c (c 一定), a=bc (c 一定) 都可以表示正比例关系吗?你能说说吗?”
这样的教学环节既检测学生对正比例的理解 -- 是否能理解并运用符号表示数量关系和变化规律。符号看起来是多变的,如果真正意义的掌握相应的符号语言,就能更清楚,便捷的表达数量关系与变化规律。
【我对符号意识的理解】
经过这一段时间对符号意识的学习,我们团队对符号意识有了更深的认识。
一、关于符号意识的理解
1. 符号是数学中特有的,是数学的语言、工具和方法。因此,符号是针对具体事物抽象概括出来的一种简略性的记号或代号。
2. 数学符号最本质的意义就在于它是数学抽象的结果。数字、字母、图形、关系式等构成了数学的符号系统。数学符号具有抽象性、明确性、严谨性、简略性和通用性等特性。
3. 符号意识与符号不同,数学符号意识应该同时具有数学、符号、意识这三个方面的特征,包括数学学科上知识本身的价值感悟、符号学上符号的抽象性的对应关系、心理学上思维引导下意识的心理倾向和行为能力。
4. 学生应该具备的符号意识有三个层次,第一层次生活化的语言,第二层次数学化的语言,第三层次符号语言。
5. 所谓数学符号意识,即学习者在数学思维的引导下,对数学知识与数学符号之间抽象对应关系的一种积极主动的行为反应和心理倾向,通过感知与理解数学符号的内涵,借助数学符号进行运算与推理,最终实现符号交流与表达等数学思维方式,在解决数学问题过程中所表现出来的一种数学符号的核心素养。由此可见,数学符号的使用并不是只停留在潜意识中的直觉,而应是一种积极运用符号的心理倾向。
二、关于符号意识的培养
1. 小学阶段发展学生的符号意识是数学教学的重要培养目标。学生用生活化的语言表达,教师逐渐引领学生用数学化的语言,最后到符号语言,是潜在的培养学生符号意识。
2. 符号意识的培养要在各学段紧密结合概念、命题、公式的教学过程中进行。从小学开始,教师就要有针对性地引导学生进行符号意识的培养。可以利用数学符号进行表达,并实现符号转化;从具体问题中抽象出数学符号。可以运用数学符号推理,进行抽象运算,能理解数学符号的不同含义,能识别不用的数学符号,以帮助学生体验数学符号的价值。
3. 符号意识的建立要与学生的生活经验相联系,在生活情境中,理解符号表达的意义。建构主义理论认为,教学不能无视学习者已有的知识经验,应当把学生原有的知识与活动经验作为新知识的生长点,生长新的知识经验,数学符号意识的形成同样应该遵循这样的规律。
4. 培养学生符号意识需要一个过程,所以教学中我们需要让学生亲近符号,接受并理解符号。在教学中内化符号思维,通过推理情境中的规律,进行符号思维活动的过程,发展符号思维。
【思考在延伸】
关于本课还有三个方面进行探究:
1. 正比例关系式的两种表征是否要对比。
2. 教材中正比例描述性定义突出表述两个变量的比值一定,但在后面正比例图像中是要经过(0.0)点的。所以是否要渗透两个字母式 的关系?
3. 学生学习完正比例后,学生的符号意识可以达到形式化的理性辩证水平。今后的教学中让更多的学生深化对符号表征的理解,那么要通过什么样的方式让学生提高普适水平呢?
【教材图片】
3年前 回复了 美伢 创建的主题› 展示大赛-2022 › 【2022 春】内蒙古包头市东河区同道小学(百所示范校)李佳 6 下 《正比例》 |
团队磨课图片:
关于《正比例》中的符号意识研究,包头市东河区同道小学进行了线上线下多次研讨。
线上研讨记录:
在东河区教研员马凯老师和李燕老师的引领下,我们开展了多次线上教研。
线下研讨记录:
团队成员在同道小学六年级四班进行第一次试讲,围绕本次活动主题 “符号意识” 与教学环节设计展开讨论。
线下研讨记录:
为了厘清 “符号意识” 的内涵,在 “基于课程标准的单元整体教学” 中落实 “符号意识” 这一数学核心素养,全面提升东河区小学数学课堂教育教学质量,东河区教育教学研究中心于 2022 年 4 月 8 日上午在同道小学开展 “符号意识” 线下线上示范课研摩活动。
线下研讨:
同道团队针对《正比例》课程细节,结合符号意识进行最终版的改稿设计讨论。
3年前 回复了 美伢 创建的主题› 展示大赛-2022 › 【2022 春】内蒙古包头市东河区同道小学(百所示范校)李佳 6 下 《正比例》 |
第四次教研记录:
关于 “符号意识主题活动”,在 4 月 24 日我们团队进行了第四次教研活动。这次主题活动主要针对怎样推动学生用符号表示数量关系式、分层作业、板书设计等课程细节展开讨论,力求做到精准教学。
一、关于推动学生符号表示数量关系
数学符号在情境中才赋予丰富的意义。在我们的课堂教学中注意创设情境,让学生置身于情境中,激发学生对数学符号的探究欲望,让学生积极地去参与,去体验最终达到,创造符号、理解符号、用符号去表达。课堂上当学生呈现出用字母表示数量关系式时,教师要用引导的方式让学生再次让学生尝试用不同的字母去表示,并结合情境解释字母式,推进学生用符号表示数量关系式。
二、关于分层作业
“分层作业” 的初衷,是为了平衡学生知识点储备不同,从而设计针对不同层次的学生都具有挑战性的作业。也为了连接第二课时,引发学生思考做一些铺垫。
分层作业练习是教师为了检测整节课学生是否达到学习目标设计的,体现了老师的意图。分层作业是否合理与科学,还得在课堂上学生真正的做了练习之后,进行反馈与分析。所以,还得通过后续的跟进,才能逐步检测出分层作业真的合理与科学。
三、关于板书
板书是一节课的窗口,知识精髓的体现。以思维导图的形式呈现板书,使得这节课层次更加分明,条理更加清晰。帮助学生梳理学习路径。
通过一次次的教研,让我们对这节课有了新的解读。在探讨、论证的过程中,我们团队也成长了许多。请各位老师多提建议,我们会认真阅读并思考,谢谢大家。
3年前 回复了 美伢 创建的主题› 展示大赛-2022 › 【2022 春】内蒙古包头市东河区同道小学(百所示范校)李佳 6 下 《正比例》 |
三稿反思:
一、自我探究环节
有《变化的量》的铺设,经过前测分析,学生都能用生活化的语言描述两个变量的变化情况,但对变量的本质描述探究不深入,部分同学单一的观察一组变量,不经历对比分析,所以对变量的本质描述只停留在有规律和无规律。 这里需要教师引导学生去对比观察两组变量的相同及不同,引导学生在辨析过程中,深入探究变量的本质规律。
二、数量关系表征变量规律
学生能用数学语言:通过求 2 组变量的比值,发现 “正方形周长与边长”、“面积与边长” 的变化规律。三稿中,教师引导学生用更简洁的数量关系式去表示变化规律。
思考:用数量关系式去表征变量关系,只是为了凸显简洁吗?
运用数量关系式表征,不仅仅是更简洁的表征变化规律,更重要的是引导学生把对数据的计算,提升到对变量关系的关注上。所以,这里调整为:用数量关系表征正比例前,先引导学生结合动图,说说两组变量的比值,通过对比值意义的解释,使学生体会到通过分析变量的数量关系同样能发现变化规律。再引导学生用数量关系表征变化规律,顺学而思不会突兀。
三、字母式表征正比例
“你能用更简洁统一” 的方式表征正比例关系吗? 以任务驱动促使学生想办法,有了前面学生呈现两种数量关系: 路程 = 时间 × 速度(速度一定)路程 / 时间 = 速度(速度一定)
学生用字母式表征时,能想到两种形式的字母式:ab=c (c 一定),a=bc (c 一定) 对比时,共通之处,孩子们是能借助情境和乘除法逆运算理解的。 但有学生关注到作为分母的 b 不能为 0,关于这一问题,学生缺乏更多的正比例实例支撑,探讨也只是浅尝辄止,所以调整为根据学情点到为止,给孩子们设下疑问后续继续探究。
四、板书调整
板书的设计调整为以思维导图呈现学生的学习路径 ,帮助学生梳理本节所学及后续学习的知识脉络,建立知识网,同时为后续学生学习反比例等内容提供探究的路径。
五、分层练习调整
最后一题,同情景下呈现多种变量关系,让学生运用正比例的意义判断正比例关系,虽然没给出表格数据,但孩子们的方法很多,有依据变化方向的一致性排除的,有情境列举数据求比值的,有分析两个变量的数量关系的,更多地给予时间让孩子们说说判断依据,也是进一步对正比例意义的巩固,所以把问题二,四种变量的变化情况分类取消。
3年前 回复了 美伢 创建的主题› 展示大赛-2022 › 【2022 春】内蒙古包头市东河区同道小学(百所示范校)李佳 6 下 《正比例》 |
是的数量关系对六年级的孩子们来说并不陌生,也积累了许多生活经验和数学经验,但过往分析数量关系时孩子们是现在静态的角度,分析着常量的关系,本单元开启了变量的认知,同样的数量关系在动态的角度去分析变量间的关系,是一个新的数学角度。
3年前 回复了 美伢 创建的主题› 展示大赛-2022 › 【2022 春】内蒙古包头市东河区同道小学(百所示范校)李佳 6 下 《正比例》 |
谢谢老师的鼓励和肯定,几次磨课的不断调试中,各位老师的建议给了我很多思考,此刻是凌晨 1 点 32 分,刚刚又调整了学习单,这几个月来常常在夜深人静的时候思考与大家交流的问题,有时候不知道该怎么解决,是大家的交流讨论给了我许多的感想,思路也渐渐清晰起来,看到您鼓励给了我很大的信心❤️。
3年前 回复了 美伢 创建的主题› 展示大赛-2022 › 【2022 春】内蒙古包头市东河区同道小学(百所示范校)李佳 6 下 《正比例》 |
以上是我们的第三稿,请各位老师同行多多提出宝贵建议,有关于《正比例》第一课时还有可以进一步思考的问题,请大家提出我们团队会认真思考大家的建议。
3年前 回复了 美伢 创建的主题› 展示大赛-2022 › 【2022 春】内蒙古包头市东河区同道小学(百所示范校)李佳 6 下 《正比例》 |
在学生熟悉的路程情境中没有出现这个问题,因为孩子们对比值的意义很明确,但是在竹竿和影长的情境中,学生出现两种比,实际上在这样的情境中都解释的通,还是学生对比值的意义不是跟明晰,更多地关注数据,而没有关注意义。所以每次都追问学生比值的意义是什么,引导学生关注变量关系,这也是后面设计脱离数据的练习的意义。本题在三稿中也对课本中的问题做了调整,以引导式问题,让学生去思考两个变量的关系。
3年前 回复了 美伢 创建的主题› 展示大赛-2022 › 【2022 春】内蒙古包头市东河区同道小学(百所示范校)李佳 6 下 《正比例》 |
《正比例》教学设计三稿
【教材分析】
《正比例》第一课时,教材首先呈现了正方形面积与边长、周长与边长的表格,通过实例让学生看到每一组中的两种量的变化情况,引导学生初步发现 “正方形的面积和周长都是随着边长的增加而增加”;再通过对比这两组量的变化的区别,从变化中看到 “不变”,初步体会周长与边长、面积与边长之间的变化规律不同。然后再结合 “路程与时间” 两个变量关系的研究,丰富学生认识正比例的例证,初步理解正比例的意义。在第一课时两个正例一个反例的基础上,“试一试” 中又提供了一正一反两个情境,帮助学生辨析理解正比例的意义。这样,教材从不同的角度提供了有利于学生探索并理解正比例意义的情境,既包括 “时间与路程”“乐乐和爸爸年龄变化情况” 等生活情境,也包括 “正方形周长与边长、面积与边长” 等数学情境,情境中有正例也有反例,为学生理解 “正比例” 意义提供了丰富的直观背景和具体案例,以引导学生经历从具体情境中抽象概括出正比例的过程,从而理解正比例的意义。
【学情分析】
前测内容: 正比例第一课时前测题
1. 观察下面表格,写写你的发现。
发现一:
表格 1 中的变化的量有( )和( ),它们是怎样变化的?
表格 2 中的变化的量有( )和( ),它们是怎样变化的?
发现二 : 表格 1 和表格 2 的两组变量在变化中的相同之处与不同之处是什么?
发现三 : 你能用自己喜欢的方式表达表格 1 的变化规律吗?
设计意图:
发现一:衔接《变化的量》后测,学生借助表格用自己的语言分别描述两表中的变量关系。
发现二:观察学生学习路径,对比表 1 和表 2 观测学生做对比时,运用生活化语言关注表象不同、还是能运用数学语言、符号语言关注本质规律。
发现三:学生在表征变化关系时,观测学生符号意识思维水平处于经验观察水平、本质内化水平、理性辩证水平、结构普适水平哪一水平。
知识基础:
《正比例》这个内容是学生在学习乘法时,已经初步接触了正比例的变化规律,在六年级上册已经学习了比的意义、比的化简与比的应用等。
学习难点:
判断有具体数据的两个量是否成正比例是学生容易掌握的,但是离开具体数据,判断两个量是否成正比例对学生来说是有难度的。
【教学目标】
1.结合 “正方形的周长与边长,正方形的面积与边长,路程、时间与速度” 等情境,用自己的语言描述它们之间的变化关系,能从变化中看到 “不变”,认识正比例。
2.能根据图表或文字总结成正比例量的变化规律,并用此规律判断两个相关联的量是不是成正比例,能举出生活中成正比例的实例。
【教学重难点】
教学重点:
经历从具体情境中抽象概括出正比例的过程,理解正比例的意义
教学难点:
体会 “变与不变” 的数学思想,运用运动和变化的观点、集合和对应的思想分析变量关系,依据正比例的意义判断两个量能否构成正比例关系。
【教学过程】
一.情境导入,探究两个变量间的关系
师:同学们, 第二单元我们学习了比例的相关知识, 上节课我们认识了,生活中有许多变化的量,今天我们继续跟随淘气、笑笑走进变量的世界。
呈现视频动画,引出问题: 正方形周长与边长,面积与边长是否存在着某种关系。
探究要求:
1. 独立填写表格。
预设:
师追问:边长 4cm 吗?只能是整数吗?如果边长是 3.5cm,周长和面积是多少呢?
预设:
生 1:边长还可以是 5、6、7...... 一直增长,同样周长和面积也很会随着增长
生 2:边长也可以是小数、分数,但都比前面的 3 大
生 3: 当边长是 3.5cm 时,周长时 3.5×4=14cm,面积是 3.5×3.5=12.25cm²
【调整理由:表格中数据的补充,学生更多的是借助过去所学数量关系,关注点多在计算,没能站在动态的、对应的角度去看看待变化关系。由学生习惯的常量视角到变量视角的变化,需要老师引导学生调整观察视角】
2. 小组合作探究:观察表格你有什么发现。
预设:
生 1:正方形的周长总是边长的 4 倍。
生 2:正方形的周长与边长的比值是一样的。
生 3:正方形边长加 1cm,周长就增加 4cm。
生 4:正方形边长扩大几倍,周长就扩大几倍。
生 5:正方形的面积和正方形的周长都随着正方形的边长增加而增加。所以正方形周长与边长,面积与边长是相关联的变量。
调整:
师追问:同学们的观察发现有横向、纵向,我们一起梳理一下:从左到右看正方形的面积和周长都随着正方形的边长增加而增加,那从右到左呢?他们的关系怎么表述。
预设:
生 1:从右到左看正方形的面积和周长都随着正方形的边长减少而减少。
生 2:我们可以说正方形的面积和周长都随着正方形的边长变化而变化,而且它们的变化方向是一致的。
【设计意图:借助学生熟悉的正方形周长与边长,面积与边长这两种学生熟悉的相关联的量, 通过引导学生有序观察,梳理自己的发现, 让学生感知判断正比例关系的第一个要素,两种量相关联,一个量随着另一个量的变化而变化 (变化方向一致)。】
二.比较变量特征,认识正比例
(一)情境一:正方形周长与边长,面积与边长变量关系的不同特点
师:同学们发现了上面两种变量关系的共同点是:
都是相关联的量,一个量随着另一个量变化而变化。(方向一致)
追问:那么正方形周长与边长,面积与边长的变化规律相同吗?
预设:
生 1:正方形的周长是边长的四倍,但面积与边长的倍数关系是不确定的。
生 2:正方形周长与边长的比值是不变的,但面积与边长的比值是不相等的。
师:能用更简明的数量关系式表示它们的变化规律吗?
预设:
生 3: 正方形的周长 ÷ 正方形的边长 = 4(一定)
正方形的面积长 ÷ 正方形的边长 = 正方形的边长(变化的)
【设计意图:在学生发现两组量的变化情况的基础上,引导学生发现两组变量变化规律的不同,从变化中发现不变为理解正比例意义奠定基础,并引导学生用更简明的数量关系式表征关系。】
(二)情境二:一辆匀速行驶的汽车,行驶时间和路程
独立探究要求:
1. 独立完成表格,观察表格想想你从表中发现了什么。
3. 变化有什么规律,并用数量关系式表示。
预设:
1. 学生独立填写表格
生 1:时间还会一直增长,路程也会随着时间增加而增加,如果用字母 n 表示时间,路程就是 90n
2. 说一说你的发现。
生 1:时间是原来的几倍,路程也是原来的几倍。
生 2:时间是原来的几分之一,路程也是原来的几分之一。
3. 变化有什么规律,并用关系式表示。
生 3:速度 × 时间 = 90(速度一定)
生 4:90× 时间 = 路程
追问:90 这个比值表示什么意义呢?
生:表示速度,速度一定就是匀速行驶。
【设计意图:借助现实世界中学生最熟悉的路程、时间与速度之间的数量关系,速度不变,就是路程随着时间变化而变化的过程中,路程与时间的比值保持不变,由此引入路程与时间成正比例,为学生理解正比例丰富实力支撑。】
(三)对比正比例的材料,说一说什么样的两个量成正比例关系。
师:同学们的发现真精彩,出示正比例的描述性定义。你能说说判断路程和时间是否成正比例的依据有哪些吗?
预设:
生 1:路程随着时间变化而变化,它们的变化方向是一致的。
生 2:路程与时间的比,也就是速度是一定的。
师:你能说说第一个问题中正方形周长与边长,面积与边长成正比例吗?
预设:
生 1:正方形周长与边长成正比例,它们是两个相关联的量,且比值一定。
生 2:正方形的面积与边长不成正比例,虽然他们是两个相关联的量,一个量随另一个量的变化而变化,但它们的比值是不确定的。
师:结合正方形周长与边长,一辆匀速行驶的汽车,路程与时间的关系,说一说什么样的两个量成正比例关系。
生:我明白了,两个相关联的量,一个量随着另一个量的变化而变化(变化方向一致),且它们的比值一定,它们就成正比例。(板书正比例的意义)
追问:能用一个关系式表示出所有成正比例的变量关系吗?
预设:
生 1:可以用字母表示
生 2:比如 a÷b=c (c 一定) a 可以表示路程或者总价,b 可以表示时间或者数量…,c 表示它们的比值,c 是一定的。
生 3:也可以是 a=bc (c 一定)
追问:这两个式子 a÷b=c (c 一定), a=bc (c 一定) 都可以表示正比例关系吗?你能说说吗?
生 4:这两个式子 a÷b=c (c 一定), a=bc (c 一定) 这两个式子都可以表示正比例关系,都能表示 a 随着 b 的变化而变化且比值 c 是一定的。
生 5:它们是乘除法的逆运算,可以互相转化。
【设计意图:让学生自主阅读教科书中给出关于正比例的具体情境的描述性定义。并结合教材中提供的两个正例和一个反例,帮助学生认识正比例的意义】
三.巩固练习,辨别生活中的正比例关系
1. 学校科学小组在同一时间、同一地点进行观察实 验,测得竹竿的高与竿影的长如下表。
(调整)
(1)表格中相关联的量是( )和( ),( )随着( )的变化而变化。
(2)写出几组竿影的长与竹竿高的比,并计算比值(比值表示什么),你的发现了什么?
我的发现:
(3)竹竿的高与竹影的长是不是成正比例? 说明理由。
【设计意图:考察学生能否依据正比例的意义判断两个量是否成正比例,学生不仅要写出结论,还要说明理由。学生用自己语言描述的过程,就是对正比例意义应用过程。 学生对正比例的不同呈现方式,判断的难易程度是不同的,其中表格法呈现的判断正确率高于纯文字描述的呈现方式,可见学生还是需要借助直观性强的素材理解正比例的意义。第一题基础训练中,以表格数据为载体呈现变量关系,以引导式的问题,帮助学生有序思考、判断正比例关系。】
2. 观察视频中的情境,思考以下的问题
(1)在上面的情境中相关联的量是( )和( )。( )随着( )的变化而变化。
(2)情境中两个变化的量成正比例吗?说明理由
追问:你能用字母式解释它们的关系吗?
【设计意图:以加油的动态生活素材,让学生运用运动和变化的观点分析变量关系,用字母式概括表示出,金额和油量所有点的集合及其对应关系。 脱离表格数据呈现变量关系,是学生厘清正比例的难点,以学生熟悉的加油情境的动态视频,让学生在变化中思考,把静态的、有限的表格数据换成动态的、对应的视频数据,引导学生通过分析情境变量关系,而不是只依靠具体数据计算判断正比例。】
3. 联想生活场景,判断两个相关联的量是否成正比例,说明理由。
对比四组变量的变化情况,你能分分类吗?
生活场景一:
一个生产防护服的车间,要生产 10000 件防护服,已经生产的防护服件数与未生产的防护服件数。
生活场景二:
一个生产防护服的车间,要生产 10000 件防护服,每天生产的防护服件数与生产的天数。
生活场景三:
一个生产防护服的车间,每小时生产的防护服为 600 件,生产的防护服的总件数与生产的时间。
生活场景四:
张师傅比李师傅每小时多做 50 个口罩,生产时间相同的情况下,张师傅生产口罩的数量与李师傅生产口罩的数量。
调整: 在同一情境下,设计四个场景,不同的变量, 相同之处都是一个量的变化引起另一个量的变化,但变化趋势是有所不同的: 场景 1、2 两组变量的 变化趋势相反 ,场景 3、4 两组变量的 变化趋势相同 。 相同之处都有变化规律,但是规律却不同: 有和一定,有积一定,有差一定,有比值一定 ,只有比值一定才是正比例,对比之后,学生对于正比例理解更深入。
场景 1 是防护服的总量不变,已生产的和未生产的和一定。
场景 2 是防护服的总量不变,每天生产的防护服件数与生产的天数的积一定。
场景 3 每小时生产的防护服不变,每天生产的防护服件数与生产的天数的比值一定。
场景 4 两位师傅生产口罩的差一定
【设计意图: 在同一情境下,设计四个场景 ,都是相关联的量但变化的趋势不同,都是有变化规律的但规律却不同。让学生在丰富的变量素材中,辨别变量中的关系,通过正、反素材分类对比,进一步强化了正比例的认识。 正、反比例的学习是抽象的,文字描述的呈现更进一步让学生把对数据的关注,提升到对变量关系的关注上,也是学习正、反比例以及后续函数学习的焦点,也是从常量思维到变量思维的转变,给孩子们提供丰富的变量关系,在辨析不同变量关系的本质规律中,进一步加深对正比例意义的理解。】
四.说一说这节课你有什么收获和困惑
五.板书
板书的设计还在修改中,想以思维导图的方式引导学生梳理正比例建构的过程,并连贯前后知识形成正比例学习的思维路径,为学生后续自我探究反比例的提供学习路径。
3年前 回复了 美伢 创建的主题› 展示大赛-2022 › 【2022 春】内蒙古包头市东河区同道小学(百所示范校)李佳 6 下 《正比例》 |
学生用其他字母完全可以,应该放手让学生先自己用字母式去表征,并让学生结合情境说说字母表示的意义和字母式表达的关系。
3年前 回复了 美伢 创建的主题› 展示大赛-2022 › 【2022 春】内蒙古包头市东河区同道小学(百所示范校)李佳 6 下 《正比例》 |
第一次试讲没有很好的把握学情,急于要急于给,没有设计好问题顺学而导让学生在问题的导向下思考,做出主动选择,感谢老师的建议
3年前 回复了 美伢 创建的主题› 展示大赛-2022 › 【2022 春】内蒙古包头市东河区同道小学(百所示范校)李佳 6 下 《正比例》 |
是的,意识是学生的一种主动选择,这也让我思考想让孩子们主动的有感而悟更需要老师提供有价值的问题和导向性的思考,如:对一个情境下正比例关系的表征学生可以用语言文字,追问更简洁的表征引导学生思考,用到更简明的数量关系表达式,再次抛出问题多个正比例变量关系能否用一个表达式,这样就进一步让学生在问题牵动下主动选择更具有一般普适性的字母式。
3年前 回复了 美伢 创建的主题› 展示大赛-2022 › 【2022 春】内蒙古包头市东河区同道小学(百所示范校)李佳 6 下 《正比例》 |
很认同老师的观点,学情前测不仅是教师把握学情的重要策略,也是学生了解自己生长点的重要方法,帮助学生带着思考、带着疑问有目的的学习,也是提高课堂教学效果的好方法,感谢您的回复
3年前 回复了 美伢 创建的主题› 展示大赛-2022 › 【2022 春】内蒙古包头市东河区同道小学(百所示范校)李佳 6 下 《正比例》 |
第三题文字描述呈现变量关系是更有难度的,有了前面表格和动态视频的呈现可以进一步引导学生分析变量关系,不同能力层次的孩子会有不同水平的分析,有的孩子借住表格经验可以结合情境举出具体数据进行分析,有的孩子能通过数学语言发现本质化的内在关系,有的孩子能结合生活中同规律的变量关系关注到普适性的一般规律。《正比例》第二课时也将继续给孩子们提供丰富的实例(正比例的正例和反例)让孩子们进一步加深对正比例意义的理解,所以本题的设计也是与第二课时后续学习的一个衔接。
3年前 回复了 美伢 创建的主题› 展示大赛-2022 › 【2022 春】内蒙古包头市东河区同道小学(百所示范校)李佳 6 下 《正比例》 |
嗯嗯,是的,通过这次活动,团队的老师们对符号意识的理解有了更多的认识和想法,作为青年教师的我们,对今后教学中核心素养的培养也多思考。
3年前 回复了 美伢 创建的主题› 展示大赛-2022 › 【2022 春】内蒙古包头市东河区同道小学(百所示范校)李佳 6 下 《正比例》 |
谢谢老师的回复和肯定,您的回复我们都一一阅读了,让我们团队成员从小学阶段儿童符号意识的培养整体纵观、思考,我们会认真阅读每位老师的回帖,感谢老师们给我们带来不同视角的思考。
3年前 回复了 美伢 创建的主题› 展示大赛-2022 › 【2022 春】内蒙古包头市东河区同道小学(百所示范校)李佳 6 下 《正比例》 |
正比例第一课时分层练习
正比例分层练习的设计思考:
1. 学生对正比例的不同呈现方式,判断的难易程度是不同的,其中表格法呈现的判断正确率高于纯文字描述的呈现方式,可见学生还是需要借助直观性强的素材理解正比例的意义。第一题基础训练中,以表格数据为载体呈现变量关系,以引导式的问题,帮助学生有序思考、判断正比例关系。
1. 学校科学小组在同一时间、同一地点进行观察试验,测得竹竿的高和竿影的常如下表:
(1)表格中相关联的量是( )和( ),( )随着( )的变化而变化。
(2)写出几组竿影的长与竹竿高的比,并计算比值,你的发现了什么?
我的发现:
(3)竹竿的高与竹影的长是不是成正比例? 说明理由。
理由:
2. 脱离表格数据呈现变量关系,是学生厘清正比例的难点,以学生熟悉的加油情境的动态视频,让学生在变化中思考,把静态的、有限的表格数据换成动态的、对应的视频数据,引导学生通过分析情境变量关系,而不是只依靠具体数据计算判断正比例。
2. 观察视频中的情境,思考以下的问题
(加油动态视频)
(1)在上面的情境中相关联的量是( )和( )。( )随着( )的变化而变化
(2)情境中两个变化的量成正比例吗?说明理由
3. 正、反比例的学习是抽象的,文字描述的呈现更进一步让学生把对数据的关注,提升到对变量关系的关注上,也是学习正、反比例以及后续函数学习的焦点,也是从常量思维到变量思维的转变,给孩子们提供丰富的变量关系,在辨析不同变量关系的本质规律中,进一步加深对正比例意义的理解。
3. 联想生活场景,判断两个相关联的量是否成正比例,说明理由。 对比四组变量的变化规律,你有什么发现?
生活场景一:
一个生产防护服的车间,要生产 10000 件防护服,已经生产的防护服件数与未生产的防护服件数。
生活场景二:
一个生产防护服的车间,要生产 10000 件防护服,每天生产的防护服件数与生产的天数。
生活场景三:
一个生产防护服的车间,每小时生产的防护服为 600 件,生产的防护服的总件数与生产的时间。
生活场景四:
张师傅比李师傅每小时多做 50 个口罩,生产时间相同的情况下,张师傅生产口罩的数量与李师傅生产口罩的数量。
3年前 回复了 美伢 创建的主题› 展示大赛-2022 › 【2022 春】内蒙古包头市东河区同道小学(百所示范校)李佳 6 下 《正比例》 |
@事随心愿丽 感谢老师提出的建议,写出数据中每组对应量的比和比值确实是正比例教学中发现正比例意义的思考路径,在学习活动中也是要引导孩子们观察这一发现的,在前测中这里要不要通过引导学生对比值的关注,我是这样想的,本次前测主要想了解学生数据对比时,他的思维层次和符号意识水平处于什么阶段,所以问题的导向基于变化的量一课进一步让学生开放式地思考、表达,没有设置更具象的导向问题,但您的建议给了我启发,在教学中可以给学生有导向性的问题,引导学生在对的路径下思考探究,既体现老师的主导作用,也体现学生的主体性。