新世纪小学数学论坛
探索、发现数学的乐趣
现在注册
已注册用户请  登录
主题样式选择
默认主题样式 ✅
知乎主题样式 
tanjing
tanjing

《圆的面积(一)》二稿反思

今天进行了第二次试讲,程序、环节、目标都更清晰了,但是还是有很多地方值得思考和改进,如下进行一个总结。

首先引入环节,1 个 12 寸和 2 个 6 寸的披萨兑换,公平吗?在这次试讲中,出现了公平的声音,但在大多数同学回答不公平时又妥协了,这时应该直接让同学们凭第一感觉举手表决,同意公平的举手,同意不公平的举手,找到真实的声音,把冲突放大。不管公平还是不公平,最终都会归到比较面积的大小。这里在把披萨抽象成圆的时候可以用相同大小的圆片来比一比,把比较和抽象做得更彻底。

在问同学们,你认为可以怎么得到圆的面积时,学生回答,我们以前在学习不规则图形的面积时可以通过数方格的方法得到,要把学生所说的不规则放大,实际上就是说弯弯曲曲的边,为最后的化曲为直做好铺垫。同时表扬他,能够用原来的方法来思考今天的问题,很会学习。

在同学们动手操作求半径为 5 厘米圆的面积时,有同学直接就已经用面积公式把圆的面积直接求出来了,而且很多同学都已经知道圆的面积公式了,这时候我像应该尊重学情,顺应学生,让他们把公式说出来,并说一说为什么。以此引出圆的面积转化和推导的过程。

在圆的面积公式推导过程这一环节,是本课非常重要的一个难点,可我这里上的太快,导致有很多同学,没有真正理解为什么圆的面积可以用 s=πr² 来求。所以在这个环节应加入平行四边形的底就是圆的周长的一半,平行四边形的高就是圆的半径的直观演示,多次加深同学们对它们对应关系的理解和印象从而理解圆的面积公式由来。

另外,关于 12 寸和 6 寸披萨半径是 15 和 7.5 这个数值太难算了,而半径 10 厘米的圆刚好约等于 8 寸,半径 5 厘米的圆刚好约等于 4 寸,所以我将引入部分的披萨改为了 8 寸和 4 寸,降低作业计算难度,更聚焦在公式的运用上。这样一来,作业就少了,所以在实践运用环节加上了一道关于钟面面积和知道转化后长方形的宽求原来圆的面积的习题,让学生在课堂上就能高质量完成作业,减轻作业负担。

最后,三稿在总结环节加上了一张 ppt,回顾前面直边图形的面积求取办法和圆的面积求取办法的异同。再次点明度量的本质就是面积单位的叠加,总结出圆还需要化曲为直和极限的思想方法来转化,并且引导学生思考能不能有其他的转化方法,为下一节课的等积变形留下端口。

关于   ·   FAQ   ·   API   ·   我们的愿景   ·   广告投放   ·   感谢   ·   实用小工具   ·   231 人在线   最高记录 231   ·     选择语言  ·     选择编辑器
创意教育工作者们的社区
World is powered by education
VERSION: c3b0ae8 · 12ms · UTC 23:29 · PVG 07:29 · LAX 16:29 · JFK 19:29
♥ Do have faith in what you're doing.