新世纪小学数学论坛
探索、发现数学的乐趣
现在注册
已注册用户请  登录
主题样式选择
默认主题样式 ✅
知乎主题样式 
tanjing
tanjing

《圆的面积(一)》一稿教学反思

《圆的面积》是在学生学习了圆的认识和圆的周长基础上学习的,并且已经在五年级《多边形的面积》这一单元,有了将图形转化成已经学习过的图形的经验,为这一节课圆的面积的探索提供了度量方法。所以同学们在这节课的展示非常的精彩,下面对一些具体的细节处理做一个反思。

开课时以披萨引入,让学生经历把披萨抽象成圆的过程,但由于寸这个单位大家都不熟悉,所以会有一些疑问,而且 6 寸、8 寸、12 寸这些数据,可以组合的情况太多,不太聚焦,所以在第二稿上只留下了 2 个 6 寸和一个 12 寸两个数据,加上了 1 寸 = 2.56 厘米的关系,并告诉了同学们 12 寸和 6 寸转换成厘米的具体大小。12 寸披萨与 2 个 6 寸披萨交换到底划算吗,全班同学都说不划算,甚至还有同学说出了 12 寸披萨等于 4 个 6 寸披萨的大小。并且他们把理由说的非常清楚,此时,老师应该对他们的回答给与肯定,并且总结出他们回答的共性:大家给出的理由都是在比较圆的面积。

圆的面积的概念应该适时加入,虽然不是难点,但也一定要给学生一个正确的示范,这一点在第二稿有改进。圆的面积就是圆所占面积的大小。

圆的面积应该怎么得到呢?学生的回答精彩,有同学说出了在圆外面画外接正方形的方法,也有同学直接说了用公式的方法,还有同学也说到了数格子的方法。此时的展示顺序非常重要,应该先是有画正方形找出范围,再是大格子数的方法,再是小格子数的方法,做好比较,得出结论:测量的单位越小,得到的结果越精确。但是不管再精确,都不能准确的求出圆的面积,我们需要用到转化的方式来帮忙了。通过展示 4 等分、8 等分、16 等分…… 等方式介绍等分的份数越多,越接近平行四边形。通过无限细分,最终化曲为直,这种伟大又有价值的数学思想方法有一个名字叫极限思想。

然后公式推导时,我问同学们,圆转化成了平行四边形,转化之后的图形跟圆有什么联系,一部分同学在此时有点蒙,可能没理解到老师此时的意思,所以我想,把过渡语改成:和前面几种方法相比,这种方法最大的区别在哪儿?转化后的面积没有发生变化,找一找图形转化前后的联系,试着探索出圆的面积公式到底怎么算,完成任务单,这样的指令更明确。

另外,本课学生动笔的环节太少,对于学生是否真的掌握知识不好把控,所以二稿增加了作业环节,意在让学生动笔动脑,充分理解并运用本课知识。

最后,在总结的时候,一定要总结出这节课的探索过程和思想方法:同学们,无论时以前学过的直边图形,还是圆,都是可以通过度量得到他们的面积大小的。尤其是像圆这样的曲边图形,可以通过转化和极限的思想,将它化曲为直,转化成我们学过的直边图形来度量。直边图形有很多,圆只能转化成平行四边形吗?不是的,有待聪明的你们下节课继续探究了。

关于   ·   FAQ   ·   API   ·   我们的愿景   ·   广告投放   ·   感谢   ·   实用小工具   ·   200 人在线   最高记录 200   ·     选择语言  ·     选择编辑器
创意教育工作者们的社区
World is powered by education
VERSION: 2c477f2 · 10ms · UTC 11:45 · PVG 19:45 · LAX 04:45 · JFK 07:45
♥ Do have faith in what you're doing.